Artificial intelligence: five minutes to understand Google’s new skin color detection system

The tech giant wants to commit to diversity. At its annual conference, Google announced last Wednesday the launch of a new shade classification, the Monk Skin Tone (MST) Scale, which, according to the company, will allow a better representation of skin colors across its platforms. Explanations.

How does this classification work?

Before the creation of this index, which is used to classify skin colors into several types, artificial intelligence engineers relied on the Fitzpatrick classification, originally designed for dermatologists in 1975, which detailed only six shades, and favored shades clear. They used it in particular to classify skin types when it was necessary to program artificial intelligence systems learning to recognize humans on an image. But for the creators of the MST Scale, this index did not represent dark skin well enough, which risked creating a bias.

Shaped by engineers and researchers from Google, and sociology professor Ellis Monk, practicing at Harvard, the MST Scale is made up of ten shades, defined by precise color codes, and intended to better represent the diversity of skin colors.

What will it be used for?

This sort of cue can be useful in computer vision, a field of artificial intelligence where computers are able to read and understand an image, much like the human eye. The systems behind Google Images could thus be smarter using this tool, and better recognize images of people with darker skin. This can, for example, improve specific search results: “When you search for makeup-related items on Google Images, you’ll see an option to narrow the results by skin tone,” says Tulsee Doshi, product manager at Google, in a press release.

In more general searches, the image results could be more diverse, which would be more representative of the population. In addition to Google Images, “we will also use the MST classification to improve Google Photos”, Google’s online storage and editing platform, adds Tulsee Doshi. “We are launching a new series of Real Tone filters designed to work best on all skin tones. Clearly: the editing software will better highlight darker skin with new settings.

Could this classification be used elsewhere than at Google?

Yes. The company chose to share it in open source (in “open source”, in French), which will make it usable by other systems using artificial intelligence. This classification could thus improve a whole bunch of systems poorly recognizing people with darker skinsuch as facial recognition programs.

But there are applications in which this classification could prove inadequate, such as “skin cancer risk assessment”, where artificial intelligence can perform diagnoses, say the creators of the MST Scale. on their dedicated website. In dermatology or in clinical contexts, “the MST would have to be validated” by studies, which has not yet been done.

We would like to thank the writer of this short article for this outstanding content

Artificial intelligence: five minutes to understand Google’s new skin color detection system

Explore our social media accounts and other pages related to them